8.20.1. sklearn.naive_bayes.GaussianNB
8.20.1. sklearn.naive_bayes.GaussianNB
Gaussian Naive Bayes (GaussianNB)
Parameters : | X : array-like, shape = [n_samples, n_features]
y : array, shape = [n_samples]
|
---|
Examples
Attributes
class_prior_ | array, shape = [n_classes] | probability of each class. |
theta_ | array, shape = [n_classes, n_features] | mean of each feature per class |
sigma_ | array, shape = [n_classes, n_features] | variance of each feature per class |
Methods
fit(X, y) | Fit Gaussian Naive Bayes according to X, y
| |
get_params([deep]) | Get parameters for the estimator 추정량에 대한 매개 변수 가져 오기 | |
predict(X) | Perform classification on an array of test vectors X. | |
predict_log_proba(X) | Return log-probability estimates for the test vector X. | |
predict_proba(X) | Return probability estimates for the test vector X. | |
score(X, y) | Returns the mean accuracy on the given test data and labels. | |
set_params(**params) | Set the parameters of the estimator. |
- __init__()
x.__init__(...) initializes x; see help(type(x)) for signature
- class_prior
DEPRECATED: GaussianNB.class_prior is deprecated and will be removed in version 0.12. Please use GaussianNB.class_prior_ instead.
- fit(X, y)
Fit Gaussian Naive Bayes according to X, y
Parameters : X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns : self : object
Returns self.
- get_params(deep=True)
Get parameters for the estimator
Parameters : deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- predict(X)
Perform classification on an array of test vectors X.
Parameters : X : array-like, shape = [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Predicted target values for X
- predict_log_proba(X)
Return log-probability estimates for the test vector X.
Parameters : X : array-like, shape = [n_samples, n_features]
Returns : C : array-like, shape = [n_samples, n_classes]
Returns the log-probability of the sample for each class in the model, where classes are ordered arithmetically.
- predict_proba(X)
Return probability estimates for the test vector X.
Parameters : X : array-like, shape = [n_samples, n_features]
Returns : C : array-like, shape = [n_samples, n_classes]
Returns the probability of the sample for each class in the model, where classes are ordered arithmetically.
- score(X, y)
Returns the mean accuracy on the given test data and labels.
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Labels for X.
Returns : z : float
- set_params(**params)
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :
- sigma
DEPRECATED: GaussianNB.sigma is deprecated and will be removed in version 0.12. Please use GaussianNB.sigma_ instead.
- theta
DEPRECATED: GaussianNB.theta is deprecated and will be removed in version 0.12. Please use GaussianNB.theta_ instead.