자연어처리

8.20.1. sklearn.naive_bayes.GaussianNB

HAyOunG0518 2019. 1. 30. 11:53

8.20.1. sklearn.naive_bayes.GaussianNB

class sklearn.naive_bayes.GaussianNB

Gaussian Naive Bayes (GaussianNB)

Parameters :

X : array-like, shape = [n_samples, n_features]

Training vector, where n_samples in the number of samples and n_features is the number of features.

y : array, shape = [n_samples]

Target vector relative to X

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from sklearn.naive_bayes import GaussianNB
>>> clf = GaussianNB()
>>> clf.fit(X, Y)
GaussianNB()
>>> print clf.predict([[-0.8, -1]])
[1]

Attributes

class_prior_array, shape = [n_classes]probability of each class.
theta_array, shape = [n_classes, n_features]mean of each feature per class
sigma_array, shape = [n_classes, n_features]variance of each feature per class

Methods

fit(X, y)Fit Gaussian Naive Bayes according to X, y

X, y에 따라 가우시안 나이브 베이 즈 맞추기

get_params([deep])Get parameters for the estimator
추정량에 대한 매개 변수 가져 오기
predict(X)Perform classification on an array of test vectors X.
predict_log_proba(X)Return log-probability estimates for the test vector X.
predict_proba(X)Return probability estimates for the test vector X.
score(X, y)Returns the mean accuracy on the given test data and labels.
set_params(**params)Set the parameters of the estimator.
__init__()

x.__init__(...) initializes x; see help(type(x)) for signature

class_prior

DEPRECATED: GaussianNB.class_prior is deprecated and will be removed in version 0.12. Please use GaussianNB.class_prior_ instead.

fit(Xy)

Fit Gaussian Naive Bayes according to X, y

Parameters :

X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

y : array-like, shape = [n_samples]

Target values.

Returns :

self : object

Returns self.

get_params(deep=True)

Get parameters for the estimator

Parameters :

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

predict(X)

Perform classification on an array of test vectors X.

Parameters :

X : array-like, shape = [n_samples, n_features]

Returns :

C : array, shape = [n_samples]

Predicted target values for X

predict_log_proba(X)

Return log-probability estimates for the test vector X.

Parameters :

X : array-like, shape = [n_samples, n_features]

Returns :

C : array-like, shape = [n_samples, n_classes]

Returns the log-probability of the sample for each class in the model, where classes are ordered arithmetically.

predict_proba(X)

Return probability estimates for the test vector X.

Parameters :

X : array-like, shape = [n_samples, n_features]

Returns :

C : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are ordered arithmetically.

score(Xy)

Returns the mean accuracy on the given test data and labels.

Parameters :

X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns :

z : float

set_params(**params)

Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns :self :
sigma

DEPRECATED: GaussianNB.sigma is deprecated and will be removed in version 0.12. Please use GaussianNB.sigma_ instead.

theta

DEPRECATED: GaussianNB.theta is deprecated and will be removed in version 0.12. Please use GaussianNB.theta_ instead.